ON CERTAIN CONSTRAINTS WITH FRICTION
(0 NEKOTORYKH SVIAZIAKH S TRENIEN)
PMN Vol.24, No.1, 1960, pp. 35-38

N. G. CHETAEV
(Moscow)

The problem of the motion of mechanical systems constrained by frictional
connections is more than of practical interest only. Usually, such
systems are reduced to systems with smooth connections by incorporating
the forces of friction with the given forces; nevertheless, a direct
application of the method of Lagrange permits the establishment of
general principles for such systems without any explicit introduction of
the constraint reactions,

1. We consider a mechanical system of n points with masses m;, which
have the coordinates x, y,, z; relative to certain fixed orthogonal
axes. Let the system be constralned by certain linear connections.

The possible displacements of the points m; under the imposed con-
straints, and at a fixed moment of time t, we denote by 8xi, Syi, Szi.

From the possible displacements we isolate all displacements which
satisfy the conditions

z'8x; + yi'dy; +282; =0 (i=1,.,n) (1.1)

where xi’, yi’, 2.’ denote the actual velocities of the points m; at the
chosen moment t. We shall call these the S-displacements.

We suppose that given forces X;, Y, *Z, act on the points »;. The
differential equations of motion of the constrained material system are

mizi’= X; 4+ Rz, miyi"=Yi4 Ry, mz'=Z;+ R, (i=1,..n) (1.2)

where R, Ry R, denote the reaction forces imposed on the system by
the connectlons.

The most usual frictional connections are determined by the axiom
Z (insxi + Ruisyi + Rziszi) =0 (1'3)
which holds for any S-displacements 8z, 8yy, 82z,
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The frictional-connections axiom (1.3) postulates that the work of
the reactions acting on the material system m; at the chosen instant of
time t, when the real velocities of the points m; are x,”, y;", 2, is
zero for any arbitrary S-displacements.

If we eliminate the reactions R, ., R ., R . from the axiom (1.3) in
accordance with the differential equations (1.2) of the real motion,
then we obtain the following relations for the real motions:

Zl(mixi'— X‘) Sxi + (m‘yi"—— Y‘) 8y, -+ (mizi”— Z,) Szi] =0 (14)

which holds for any S-displacements 8x;, dy;, dz;.

It is of interest to note that the constraint reactions R P R”., R .
do not enter into the relation (1.4), which plays a principai role.
Actually, upon multiplying relations (1.1) by an undetermined multiplier

p; and adding it to (1.4) we obtain

2l — Xy — paad’) 2 4 (mays” — Yi— way) 8ys +
+ (mizi"— Z; — piz’) 82i] = 0 (1.5)

This equality holds for any possible displacements 8x;, 8y;, 6z; if
the multiplier u,; was so chosen that p;x ’ (or p;y;” or pyz;” ) is equal
to the corresponding projection of frictional force (with x;”, y," z;’
not zero). But under these conditions the last expression represents a
known principle in the dynamics of material systems constrained by
frictional connections.

2. In order to establish the differential equations of a material
system from the principle enunciated in (1.5), we suppose that the im-
posed constraints are expressed by the general relations

) (082 + by + i z) =0  (s=1,...,m) 2.1)

Upon multiplying these constraint equations (2.1) by an undetermined
mualtiplier A . and as an additional restriction, the S-displacements by
r;, and combining with (1.4, we have

DMz — Xy — Q)M — ze’) 82y + (Myye"— Yo — 200 — ') dys+
f ] 8
4+ (miz+ Zi — Q0 — pizy’) 8z) = 0 2.2)

By choosing n + » of the multipliers so that the coefficients in the
last expression vanish for n + m dependent S-displacements x;, y;, z;,
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we obtain for such a choice of u; and A, only terms in the last expres-
sion with 2n -~ » independent displacements dx,, 87:" 6z ,; the coefficients
for the independent displacements must be zero and consequently we have

mz" = Xi 4 D 0ai® +
my" = Y; + 205 + iy’ (i=1,..,m) (2.3)
mz= Z; + D hei® + pizy’

For determination of the multipliers A, the expressions for the
material system constraints are used, written in the form of a relation
for admissible velocities as a refinement of (2.1):

a0z + by + c0z) + e = 0 (0=1,...,m) (2-4)

The relations for determining the multipliers u,, being insufficient,
must be either a refinement of relations (1.1) or else the values of the

multipliers g must be given beforehand as characteristics of the
frictional forces.

3. If the geometrical relations (2.4) are integrated, then it is
possible to employ the Lagrangian method to eliminate the multipliers
A o it follows that the geometrical relations must be expressed by means
of new holonomic variables Qys vees Qg
Xy = xi(Qn-m Qi t)' Y=Y (qn-"i Tk t)) 2 = R(Qh---n Gk t)
i=1,..,ny k=3In—m) (3.1)
From this the possible displacements are obtained as the relations

oz dy Oz
b =Rgp 0 =i, bu=3g 0 (3.2)
Upon substitution of these values into (1.5) we have
d oT  oT a1 _ ,
Zaq,[mz,}?—-a—%—ou+&7]—0 (3.3)

if the p; do not depend on the velocities and where f denotes the dis-
sipation function

1 4 ’ 14 .
=— 5 dm @y 5 =h+hi+h (3.4)
From this we obtain the equations of motion in the form
d aT aT a

in which the multipliers B, still undetermined, have entered into the
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dissipation function f. For given values of the p; mltipliers, the
dissipation function f is completely determined, and consequently it is
possible to express the characteristics of the frictional connections by
means of a dissipation function, if the #; depend only on the time and
position of the system.

4. Upon multiplying Equations (3.5) by q,” and adding, we shall have

2Ty —To)= R0uqs'— 2fs— 1 (4.1)

Therefore 2f,+ f, determines the rate of dissipation of mechanical
energy.

Usually, in frictional connections, the mechanical energy is dissi-
pated as heat; for such connections the quantity 2f,+ f, will be relat-
ed to the heat developed by friction.

5. For definiteness it must be noted that the so-called dry friction,
reduced by Coulomb [1] to unilateral smooth constraints is not included
in this paper.

In connection with the theory of dry friction it may be noted that a
point of mass m moving under applied forces X, Y with unilateral con-
straints

y>—acos3 (5.1)

where a and b are extremely small quantities, has the following diffe-
rential equation of motion for (A > O

mx’=— k%sin%"-}-X, my'==\+Y (5.2)
The rough approximation X + Y = 0 gives the known result of Coulomb,

that the value of the frictional force is

max| _pa . %
min | — ¥ z8i0 3

which is proportional to Y and is independent of the velocity x’.
If in the exact expression for A

a z a Lz
—-mY+m5-,z" cos 3 +Xzsm3
A=

at | .z
m+5;sm’3

only the principal terms are retained, then the corresponding value of
the frictional force

- 2 x%c0s)esin T
!( Y+ 5z cosb)bsmbl
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will increase at first from the Coulomb value with the growth in x’,

while the value of x, after breaking away from the preceding crest to
fall to a second crest, will lie to the left of the point of maximum

frictional force; after this, the frictional force will decrease.
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